[CONTRIBUTION FROM CRYOGENIC LABORATORY, DEPARTMENT OF CHEMISTRY, THE OHIO STATE UNIVERSITY]

Thermal Conductivity of Condensed Gases. III. The Thermal Conductivity of Liquid Deuterium from 19 to 26°K.

BY ROBERT W. POWERS, ROBERT W. MATTOX AND HERRICK L. JOHNSTON

Received June 29, 1954

The thermal conductivities of liquid normal and liquid orthodeuterium measured over the temperature interval 19-26°K. were found to be the same within the limits of experimental error and can be expressed by the equation $K = (2.020 + 0.04965T) \times 10^{-4}$, cal. cm.⁻¹ sec.⁻¹ deg.⁻¹. The conductivity of liquid deuterium was found to be about 6% greater than that of liquid hydrogen.

Introduction

The thermal conductivities of liquid normal and liquid parahydrogen have been explained in a previous article from this Laboratory.¹ This paper gives the results of similar measurements on liquid deuterium. Measurements were made in a parallel plate type of conductivity cell described previously.² The correction for the heat flow through the cell wall and an estimate of experimental errors have been discussed in the article of hydrogen.¹ For deuterium, unlike hydrogen, the rate of heat evolution from the ortho-para reaction was inappreciable and could be neglected.

The purity of the deuterium used in this investigation was better than 99.9%, as checked by mass spectrometer analysis. The gas was passed through a coil immersed in liquid air before it was condensed in the cell. Normal deuterium was con-

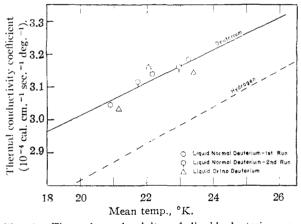


Fig. 1.-Thermal conductivity of liquid deuterium vs. temperature.

verted to the ortho-variety in the same converter as that used to convert normal to parahydrogen.

Results

The results of our measurements are summarized in Table I and are shown graphically in Fig. 1.

TABLE I

THE THERMAL CONDUCTIVITY OF LIQUID DEUTERIUM AT SEVERAL TEMPERATURES

Run no.	Material	Mean temp., °K.	ΔT	$K \times 104$ cal. cm. ⁻¹ sec. ⁻¹ deg. ⁻¹
1	Normal D₂ Normal D₂ Normal D₂	$20.91 \\ 22.17 \\ 23.26$	$3.56 \\ 4.56 \\ 5.59$	$3.05 \\ 3.14 \\ 3.18$
2	Normal D ₂ Normal D ₂	$\begin{array}{c} 21.73 \\ 22.96 \end{array}$	4.18 4.88	3.12 3.16
3	Ortho-D2 Ortho-D2 Ortho-D2	$21.15 \\ 22.05 \\ 23.42$	$3.57 \\ 4.54 \\ 5.45$	$3.03 \\ 3.16 \\ 3.14$

The conductivity of normal deuterium was measured with two different fillings of the conductivity cell. The points taken during a single filling constitute a run. Only one run was made on the orthodeuterium. It is apparent that the conductivity is independent of ortho-para composition within the limits of our experimental errors, which we believe to be less than 2.5%. The conductivity of deuterium is slightly greater than that of the lighter isotopic species (dashed line in Fig. 1); like hydrogen, however, deuterium has a positive temperature coefficient of thermal conductivity. The data were fitted to a straight line by the method of least squares. The equation

 $K = (2.020 + 0.04965T) \times 10^{-4}$, cal. cm.⁻¹ sec.⁻¹ deg.^{-1'}

expresses our results with a r.m.s. deviation of 0.9%.

COLUMBUS, OHIO

⁽¹⁾ R. W. Powers, R. W. Mattox and H. L. Johnston, THIS JOUR-NAL, 76, 5968 (1954).

⁽²⁾ R. W. Powers, R. W. Mattox and H. L. Johnston, *ibid.*, 76, 5972 (1954).